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Abstract. Dealing with data on uncertainty has appealed to many re-
searchers as there may be many stochastic problems in a realistic situ-
ation. In this paper, we study two basic uncertainty models: Existential
Uncertainty Model where the location of each node is fixed while it may
be absent with some probability, and the Locational Uncertainty Model
where each node must be present, but the situation is uncertain. We
consider the problem of estimating the expectation and the tail bound
distribution of the diameter, and obtain an improved FPRAS(Fully Poly-
nomial Randomized Approximation Scheme) which requires much fewer
samples. In the meanwhile, we prove some problems in the two uncer-
tainty models can’t be approximated within any factor unless NP⊆ BPP
by simple reductions.
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1 Introduction

Models: As mentioned before, we focus on two stochastic geometry models, the
existential uncertainty model and locational uncertainty model. We’ll show the
precise definition of these two models below:

Definition 1. (Locational Uncertainty Model):We are given a metric space P.
The location of each node v ∈ V is a random point in the metric space P and the
probability distribution is given as the input. Formally, we use the term nodes
to refer to the vertices of the graph, points to describe the locations of the nodes
in the metric space. We denote the set of nodes as V = {v1, ..., vn} and the set
of points as P = {s1, ..., sm}, where n = |V | and m = |P |. A realization r can
be represented by an n-dimensional vector (r1, ..., rn) ∈ Pn where point ri is the
location of node vi for 1 ≤ i ≤ n. Let R denote the set of all possible realizations.
We assume that the distributions of the locations of nodes in the metric space P
are independent, thus r occurs with probability Pr[r] =

∏
i∈[n] pviri , where pvs

represents the probability that the location of node v is point s ∈ P.

Definition 2. (Existential Uncertainty Model) A closely related model is the
existential uncertainty model where the location of a node is a fixed point in the
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given metric space, but the existence of the node is probabilistic. In this model, we
use pi to denote the probability that node vi exists (if exists, its location is si). A
realization r can be represented by a subset S ⊂ P and Pr[r] =

∏
si∈S pi

∏
si /∈S(1−

pi).

Problem Formulation The natural problems in the above models are to esti-
mate the expectation and the tail bound of distribution of certain combinatorial
objects, denoted by E(Obj) and P(Obj≥ 1)(or the form P(Obj≤ 1)). More
accurately, take the expectation of diameter(the longest distance between two
realized points) as an example. Note the expectation E(D), and D(r) be the
longest distance between two points in the realization r. The precise definition
of the E(D) is:

E(D)=
∑

r∈R Pr[r]D(r)

Similarly, note the probability that the diameter is no less than the given thresh-
old, i.e. P(D≤ 1). And what we estimate in this paper is E(D) and P(D≤ 1).
The P(D≥ 1) has been shown unapproxiable [13].

Preliminaries The most useful techniques in the estimation are the straightfor-
ward Monte Carlo strategy. We repeat the experiment and obtain the average of
the experiment results, and use the average as the estimation of the true value.
The number of samples required by this algorithm is suggested by the following
standard Chernoff bound.

Lemma 1. (Chernoff bound)Let random variables X1, X2, ..., XN be indepen-

dent random variables taking on values between 0 and U. Let X = 1
N

∑N
i=1Xi

and µ = E(X).Then for any ε > 0, we have P ((1 − ε)µ ≤ X ≤ (1 + ε)µ) ≥
1− 2e−N

µ
U ε

2/4

Then if we want to get an (1± ε) approximation with probability 1- 1
poly(N) ,

the number of samples needs to be O( U
µε2 lnN).

Call one realization of all nodes in both models one sample. So the main
target of our algorithm in this paper is to bound the value U

µ and use as fewer
samples as possible.

Take the Locational Uncertainty Model as an example. To simplify the ar-
gument of the running time, we assume the running time of experimenting with
one node is nearly the same whatever its locational distribution is. However, it’s
difficult to argue that how much time it will take to do an experiment with one
node. So we take one realization as one sample and use the necessary number of
samples as the evaluation criterion of our algorithms.

Our Contributions Recall that the fully polynomial randomized approxima-
tion scheme(FPRAS) for a problem f is randomized algorithm A that takes an
input instance x, a real number ε > 0, returns A(x) such that P [(1 − ε)f(x) ≤
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A(x) ≤ (1 + ε)f(x)] ≥ 3
4 and its running time is polynomial in both the size of

the input n and 1/ε.
We designed the FPRAS for E(D) and P (D ≥ 1) in both models which are

the best of our knowledge.
Huang et al.[13] gives the FPRAS for E(closet pair) and P(Closet pair≤

1)(denote by P(C≤ 1) later). The FPRAS for P (C ≤ 1) can be used to estimate
P (D ≥ 1) with some trivial operations. In the existential uncertainty model,

suppose there are m nodes, we improve the FPRAS from needing O(m
6

ε4 lnm)
independent samples to O(mε4 lnm). As for a locational uncertainty model with

m nodes and n points, we improve the FPRAS from needing O(m
6

ε4 lnm) samples

to O(m
3

ε4 lnm).
As for the E(D), note that we can get an FPRAS for E(D) by the FPRAS

for P (D ≥ 1), but it will need O(m
8

ε4 lnm) independent samples. We give the

first direct FPRAS for E(D) in this paper which only needs O(m
2

ε2 ln
2m) samples

in the worst case and need O(m
2

ε2 lnm) samples in the best situation for both
models. This direct FPRAS doesn’t need to estimate P (D ≥ 1) anymore.

Moreover, we’ll show some problems can’t be approximated unless NP⊆BPP,
which answers one of the open problems given in [13]. The main results of un-
approximation are shown in the below table:

Table 1. Results for unapproximated problems

Unapproximable value model NPC problem for reduction

P(k-th closest pair≤ 1) Loc max 2-SAT

P(k-th longest m-nearest neighbor≤ 1) Loc Maximum clique

P(k-clustering≥ 1) Loc 3-coloring

P(Minimum cycle cover≥ 1) Loc 3-coloring

P(Minimum spanning tree≥ 1) Loc 3-coloring

E(k-th longest m-nearest neighbor) Loc vertex cover

P(k-clustering≥ 1) Exis Independent Set

We will show the non-approximation of E(k-th longest m-nearest neighbor)
in Locational model and P(k-clustering≥ 1) in Existential model in Section 4.
The exact definition and brief proof for other problems will be shown in the
appendix due to space constraints.

Related Work The uncertain or imprecise data has been studied extensively
recently [7, 9]. Consider the locational data collected by the Global-Positioning
Systems (GPS), there are always some random measurement errors[28]. For an-
other example, if we use a sensor network to monitor the living habits or migra-
tion of certain animals, there will also be some noise among the data we collected
as the sensors won’t be perfect[23, 8, 17]. Some people study the imprecise data
in a model where each point may be in some region[4, 24, 30, 27].
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The existential uncertainty model and the locational uncertainty modes we
mentioned before have been studied extensively in recent years(eg. [1, 17, 3, 2,
19]). It’s worth mentioning that when all the points follow the same distribution,
it’s a classic topic in stochastic geometry literature [5, 28, 6]. The asymptotics
expectation for certain combinatorial problems(such as MST) is the main interest
in that topic. The general locational uncertain model is also of fundamental
interest in the area of wireless networks. There is a survey[12] and you can see
more references about the stochastic model and wireless networks there.

There have been many works under the term stochastic geometry in the
above uncertainty model and many other different stochastic models. For ex-
ample, Huang et al.[14] initiate the study of constructing ε-kernel coresets for
uncertain points in the above two models. The convex hull[11, 21], minimum
enclosing ball problem[25], shape fitting[20], MST[5] and many other problems
have also been studied on the imprecise data.

The study of estimating the expectation of objects in the model is started
by Kamousi, Chan and Suri[15, 16].They showed that the expectation of some
values, such as nearest neighbor (NN) graph, the Gabriel graph (GG) and so on,
can be solved in polynomial time. And they designed FPRAS for E(MST) and
E( the closest pair) in the existential uncertainty model.

Huang et al.[13] gives the FPRAS for the expected values of closest pair,
minimum spanning tree, k-clustering, minimum perfect matching, and minimum
cycle cover in both models by several powerful techniques. And they also consider
the problem of estimating the probability that the length of closest pairs at most,
or at least, a given threshold.

Most recently, Li and Deshpandeb [18] observe that the expected value is
inadequate in some problems and study the maximization of the expected utility
of the solution for some given utility function. The initial motivation for the study
is the stochastic shortest-path problem, which has been studied extensively[29,
22, 26].

2 The Expectation of Diameter

Existential Uncertainty Model: Let’s show the FPRAS of E(D) in the Exis-
tential Uncertainty Model. First, let us show the meaning of the signals we use.
Let U be the complete set of the points. And S〈≥ j〉 means that there are at
least j points realized in the set of points S. Suppose we have m points in total(
we use m to describe the complexity of samples we need later). Then there are
l =

(
m
2

)
different pairs of points. W.l.o.g, suppose the lengths of the l pairs are

distinct. And we sort them in ascending order of their length and index them.
Let ei represent the i-th pair, and di is its length. We have d1 < d2 < ... < dl.
And for a pair ei = (u, v), P (ei|α) represent the probability that both u and v
are realized conditioning on event(α).

What we want to estimate is indeed E(D|U〈≥ 2〉), because the diameter
doesn’t make sense if there is only one or zero point realized. Now let us introduce
the algorithm.
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First,for pair ei = (u, v), we can calculate P (ei|U〈≥ 2〉) = P (ei,U〈≥2〉)
P (U〈≥2〉) =

P (ei)
P (U〈≥2〉) = PuPv

P (U〈≥2〉) , which can be calculated easily by the following lemma:

Lemma 2. For a set of points C and j ∈ Z , we can compute P (C〈≥ j〉) in
polynomial time. Moreover, there exists a poly-time sampler to sample present
points from C conditioning on C〈≥ j〉 (Or C〈j〉).

Proof. The idea is essentially from [10]. W.l.o.g, we assume that the points in
C are x1, x2, ..., xn.We denote the event that among the first a points, at least
b points are present by E(a,b) and denote the probability of E(a,b) by P(a, b).
Note that our goal is to compute P(n,j), which can be solved by the following
dynamic program:

1. If a < b, P(a,b)=0. If a=b, P(a,b)=
∏

1≤l≤a Pl. If b=0, P(a,b)=1.
2. For a > b and b > 0, P(a,b)=PaP (a− 1, b− 1) + (1− Pa)P (a− 1, b).

We can also use this dynamic program to construct an efficient sampler. Consider
the point xn, with probability PnP (n−1, j−1)/P (n, j), we make it present and
then recursively consider the point xn−1, conditioning on the event E(n-1,j-1).
With probability (1−Pn)P (n− 1, j)/P (n, j), we discard it and then recursively
sample conditioning on the event E(n-1,j).

The proof of P (C〈j〉)(ie. there are exactly j points present in C) is similar
and we skip it.

Now continue our algorithm.
There exists a set of pairs S =

{
ei|P (ei|U〈≥ 2〉) ≥ 1

m2

}
. S is non-empty, or

P (U〈≥ 2〉|U〈≥ 2〉) = 1 = P (∪iei|U〈≥ 2〉) ≤ lP (ei|U〈≥ 2〉) < 1. Let Y be the
largest index among all the pairs in S. Recall that the l-th pair is the longest
one. If dY ≥ 1

lnmdl, then E(D|U〈≥ 2〉) ≥ P (D ≥ dY |U〈≥ 2〉)dY ≥ 1
m2lnmdl. By

chernoff bound, we only need to take O(m
2

ε2 ln
2m) independent samples. This is

the worst case of our algorithm.
Now consider the other situation, i.e. dY < 1

lnmdl. Then we have a set of
points H = {u|∃v ∈ U, (u, v) ∈ S}. It’s obvious that ∀u, v ∈ H, d(u, v) < 3

lnmdn
due to the Triangle inequality. As if d(u, v) ≥ 3

lnmdl, suppose (u, u′) ∈ S, (v, v′) ∈
S. Let u′′ = u if Pu > Pu′ , or u′′ = u′. And get v′′ by the similar approach. Then
P ((u′′, v′′)|U〈≥ 2〉) ≥ 1

m2 and d(u′′, v′′) > 1
lnmdl, which is impossible.(Remark:

We can understand this property as those points with a relatively high proba-
bility of realization are surrounded by a small sphere.)

Suppose x is one of the points that have the largest probability of realization
among U(if there are more than one points with largest probability, choose
one arbitrarily), then we have the following property: d(x,H) < 2

lnmdl. The
definition of d(x,H) is d(x,H) = max

u∈H
d(x, u). Let H ′ = H ∪ {x}. And we can

construct a set of points H ′′ =
{
u|u = x or d(u, x) < 4

lnmdn
}

. It’s obvious that

H ⊆ H ′ ⊆ H ′′. If H ′′ = U , we need only O(m
2

ε2 ln
2m) independent samples. Else,

we can use the following algorithm.
For any point t, let P (α|t) represent the probability of event(α) conditioning

on that point t is realized, and P (α|t) correspond to the probability of event(α)
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Algorithm 1 construct event

1: S0 = U/H ′′, N0 = ∅,i=0
2: while Si is not empty do
3: ti = arg max

u∈Si
d(u,H ′)

4: Si+1 ← Si/ {ti}
5: Ni+1 ← Ni ∪ {ti}
6: i←i+1

7: Output:Si, ti and Ni for all i

conditioning on that t is not realized. P (t|α) represents the probability that t
is realized conditioning on event(α). Let |S0| denote the size of S0. Then we

have that E(D|U〈≥ 2〉) =
∑|S0|−1
i=0 E(D|U〈≥ 2〉, ti, Ni−1〈0〉)P (ti, Ni−1〈0〉|U〈≥

2〉) + E(D|N|S0|−1〈0〉, H ′′〈≥ 2〉)P (H ′′〈≥ 2〉, N|S0|−1 < 0 > |U〈≥ 2〉).
All of the probability can be calculated easily. What we need to get is the

expected value in each part. E(D|N|S0|−1〈0〉, H ′′〈≥ 2〉) can be seen as we re-
curse our original problem into a smaller problem. Then for each i, we have the
following lemma:

Lemma 3. We only need O(mε2 logm) independent samples to estimate E(D|U <≥
2 >, ti, Ni−1 < 0 >).

Proof. Let Ui = U/Ni = U/({ti}∪Ni−1). We can rewrite E(D|U〈≥ 2〉, ti, Ni−1〈0〉) =
E(D|ti, Ni−1〈0〉, Ui〈≥ 1〉). We have a sampler condition on event(ti, Ni−1 < 0 >
,Ui <≥ 1 >) according to lemma 1. And recall that x is the point that has
the largest probability of realization, it’s obvious that x∈ Ui . Then P (x|Ui〈≥
1〉) ≥ 1/m. Let Di represent the maximum value of Diameter condition on

event(ti, Ni−1〈0〉, Ui〈≥ 1〉). We have d(ti, x) ≥ 2∗d(ti,H′)
6 ≥ Di/6 condition on

event(ti, Ni−1〈0〉, Ui〈≥ 1〉). Then E(D|ti, Ni−1〈0〉, Ui〈≥ 1〉) ≥ d(ti, x)P (x|Ui〈≥
1〉) ≥ d(ti, x)/m ≥ Di/(6m). And by Chernoff bound, we proved this lemma.

Let T(m) represent the independent samples we need to estimate E(D|U <≥
2 >) with |U | = m. We have the following recursive relation in the best case:

T (m) = T (m− |S0|) +O(|S0| ∗ mε2 lnm). Then we have T (m) = O(m
2

ε2 lnm).
Locational Uncertainty Model: Our algorithm is almost the same as the
existential model with the assumption that at for each point, there is only one
node that may be realized at this point. In principle, if more than one node
may be realized at the same point, we can create multiple copies of the point
co-located at the same place. We can’t use the Monte Carlo method directly
only when all points with high probability to be realized are ’wrapped in a small
ball’, we can use the similar algorithm like Algorithm 1 to do the recursion
and get the same required complexity as the existential model. For example, we
can run the while loop only once and get a sub-problem with size m− 1.

Theorem 1. There is an FPRAS for estimating the expected distance between
the longest pair of nodes both existential and locational uncertainty models. It
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needs O(m
2

ε2 ln
2m) independent samples in the worst case and O(m

2

ε2 lnm) in the
best case in both models.

3 The Tail Bound of Distribution

Existential Uncertainty Model: Now let us introduce the FPRAS of P(D≥1).
We can construct a set of points H ′ =

{
u|Pu ≥ ε

m

}
, and H = U/H ′. We have

that P (D ≥ 1) =
∑|H|
i=0 P (D ≥ 1, H〈i〉). We’ll show that we only need to esimate∑2

i=0 P (D ≥ 1, H〈i〉) as the remaining is negligible.
Call a set of points S connected if ∀u ∈ S, Pu ≥ ε

m ∧ ∃v ∈ S, d(u, v) ≥ 1.
Call a point u∈ S is unique in S, if let S′ = S/ {u}, S′ is not connected. Let
C = {u|u ∈ H ′ ∧ ∃v ∈ H ′, d(u, v) ≥ 1}. It’s obvious that the C we constructed
is connected.

Lemma 4. For connected non-empty set S with all points unique, P (D ≥ 1|S〈≥
2〉) ≥ ε

2m .

Proof. It’s obvious that S must have even points according to the definition.
Call pair (u,v) a match if d(u,v)≥1. Suppose S has 2k points, then S has ex-
actly k matches. Index the 2k points subject to that ui and uk+i is a match
and Pui ≥ Pui+k . Let Sa,b denote the subset of points with index in [a,b].

Then we have P (D ≥ 1|S〈≥ 2〉) =
∑k
i=1 P (D ≥ 1|ui, S1,i−1〈0〉, Si+1,2k〈≥

1〉)P (ui, S1,i−1〈0〉, Si+1,2k〈≥ 1〉|S〈≥ 2〉).
When i ≤ k, P (D ≥ 1|ui, S1,i−1〈0〉, Si+1,2k〈≥ 1〉) ≥ ε

m , and we can get
P (ui, S1,i−1〈0〉, Si+1,2k〈≥ 1〉|S〈≥ 2〉) ≥ P (ui+k, S1,i+k−1〈0〉, Si+k+1,2k〈≥ 1〉).
And notice

∑2k−1
i=1 P (ui, S1,i−1 < 0 >,Si+1,2k〈≥ 1〉|S〈≥ 2〉) = 1. Thus we proved

this lemma.

Lemma 5. We can estimate P (D ≥ 1, H〈0〉) with O(mε4 lnm) independent sam-
ples.

Proof. Then in order to prove this lemma, we only need to show that P (D ≥
1|S〈≥ 2〉) ≥ ε

2m for any non-empty connected set S by Mathematical induction.
Now prove lemma 5. When |S| = 2, then P (D ≥ 1|S〈≥ 2〉) = 1 ≥ ε

2m .
Suppose P (D ≥ 1|S〈≥ 2〉) ≥ ε

2m when |S| ≤ n for any connected S and some
integer n, then consider the situation when |S| = n + 1. When all points in C
are unique, then we have P (D ≥ 1|S〈≥ 2〉) ≥ ε

2m by Lemma 4. If there exists
some point u that are not unique, we have P (D ≥ 1|S〈≥ 2〉) = P (D ≥ 1|u, S〈≥
1〉)P (u|S〈≥ 2〉)+P (D ≥ 1|u, S〈≥ 2〉)P (u|S〈≥ 2〉). Both P (D ≥ 1|u, S〈≥ 1〉) and
P (D ≥ 1|u, S〈≥ 2〉)are no less than ε

2m . And P (u|S〈≥ 2〉) + P (u|S〈≥ 2〉) = 1,
thus we proved P (D ≥ 1|S〈≥ 2〉) ≥ ε

2m when |S|=n+1.
Then by Monte carlo directly, we proved this lemma.

Now let’s show how to estimate P (D ≥ 1, H〈1〉). Observe that P (D ≥
1, H〈1〉) =

∑
u∈H P (D ≥ 1, u,H/ {u} 〈0〉). For point u in H, denote Gu =

{v|v ∈ H ′, d(u, v) ≥ 1}. We can calculate P (Gu〈≥ 1〉, u,H/ {u} 〈0〉) exactly in
linear time. We can use the value of

∑
u∈H P (Gu〈≥ 1〉, u,H/ {u} 〈0〉) as an es-

timation of P (D ≥ 1, H〈1〉) because of the following claim.
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Claim.
∑
u∈H P (Gu〈≥ 1〉, u,H/ {u} 〈0〉) ≤ P (D ≥ 1, H〈1〉) ≤

∑
u∈H P (Gu〈≥

1〉, u,H/ {u} 〈0〉) + 2εP (D ≥ 1, H〈0〉).

Proof. Since we only miss the summation probability of these events: there are
two points x,y in H ′/Gu realized with d(x,y)≥1 and there are no points present
in Gu. Write down the expression:

∑
u∈H P (D ≥ 1, u,H/ {u} 〈0〉, Gu〈0〉). De-

note the set of realization we may miss by M . Each realization r in M can
be transferred to the event(D ≥ 1, H〈0〉) by making the only present point in
H absent. We denote the realization after the transform r′. We have P (r′) ≥
m
2εP (r). And given r′, there are at most m different realizations can be trans-
formed into it. We have P (D ≥ 1, H〈1〉) =

∑
u∈H P (Gu〈≥ 1〉, u,H/ {u} 〈0〉) +∑

r∈M P (r) ≤
∑
u∈H P (Gu〈≥ 1〉, u,H/ {u} 〈0〉)+2ε

∑
r′ P (r′) ≤

∑
u∈H P (Gu〈≥

1〉, u,H/ {u} 〈0〉) + 2εP (D ≥ 1, H〈0〉).
Call the argument method of this claim ARG, which will be useful later.

As for P (D ≥ 1, H〈2〉) =
∑
u,v∈H P (D ≥ 1, u, v,H/ {u, v} 〈0〉). Given u,v∈

H. If d(u,v)≥1, P (D ≥ 1, u, v,H/ {u, v} 〈0〉) = PuPvP (H/ {u, v} 〈0〉) which
can be calculated directly. And

∑
u,v∈H∧d(u,v)<1 P (D ≥ 1, u, v,H/ {u, v} 〈0〉) ≤

2ε(P (D ≥ 1, H〈0〉) + P (D ≥ 1, H〈1〉)) by the similar argument of ARG,
which means it’s negligible. So we can use the value of

∑
u,v∈H∧d(u,v)≥1 P (D ≥

1, u, v,H/ {u, v} 〈0〉) as an estimation of P (D ≥ 1, H〈2〉).
So far we have shown how to estimate

∑2
i=0 P (D ≥ 1, H〈i〉). The last thing

we have to do is to show
∑|H|
i=3 P (D ≥ 1, H〈i〉) is negligible. In fact, we can prove

P (D ≥ 1, H〈2 + i〉) ≤ (2ε)iP (D ≥ 1, H〈2〉) with the similar method with ARG.

So
∑
i≥3 P (D ≥ 1, H〈i〉) ≤ is negligible compared with

∑2
i=0 P (D ≥ 1, H〈i〉).

Theorem 2. There is an FPRAS for estimating the probability of the distance
between the furthest pair of nodes is at least 1 in the existential uncertainty model
with only O(mε4 lnm) independent samples.

Locational Uncertainty Model: Please pay attention that the node and point
have different meaning in the locational model. And recall that we assume that
at for each point, there is only one node that may be realized at this point.
Suppose we have n nodes and m points. Huang et al.[13] has given a FPRAS

for P (D ≥ 1) which needs O(m
6

ε4 lnm) independent samples. And we improved

it and only need O(m
3

ε4 lnm) independent samples.
The thought of FPRAS for P (D ≥ 1) in locational uncertainty model is

exactly the same as the existential model, while we need a little bit more samples
because of the difference of the two models.

Call a point u not-alone in a point set H, if ∃v ∈ H, st. d(u, v) ≥ 1∧ u,v
correspond to different nodes. And we call the set H single if H doesn’t contain
any not-alone points.

Let H =
{
u|Pu ≥ ε

m2

}
. F = V/H. So similarly, P (D ≥ 1) =

∑|F |
i=0 P (D ≥

1, F 〈i〉). And we also only need to estimate
∑2
i=0 P (D ≥ 1, F 〈i〉) as

∑|F |
i=3 P (D ≥

1, F 〈i〉) is negligible by the similar argument with ARG.
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Lemma 6. We can estimate P (D ≥ 1, F 〈0〉) by O(m
3

ε4 lnm) independent sam-
ples.

Proof. 1. It’s obvious that if H is single, then P (D ≥ 1, F 〈0〉) = 0.
2. If H is not single, with the following algorithm 2, we can estimate P (D ≥

1, F 〈0〉) by O(m
3

ε4 lnm) independent samples.

Algorithm 2 Estimate P (D ≥ 1, F 〈0〉)
1: S0 = H,N0 = ∅,i=0
2: while Si not-single do
3: find arbitrary not-alone point ti
4: Si+1 ← Si/ {ti}
5: Ni+1 ← Ni ∪ {ti}
6: i←i+1
7: Estimate P (D ≥ 1|ti, Ni〈0〉, F 〈0〉)
8: Output:The summation of P (D ≥ 1|ti, Ni〈0〉, F 〈0〉) for all i

Note that we can estimate P (D ≥ 1|ti, Ni〈0〉, F 〈0〉) with O(m
2

ε4 lnm) for any
given i. And i ≤ m, thus we finish the proof.

As for the term P (D ≥ 1|F 〈1〉). For point u ∈ F corresponds to node ni,

then we can either estimate P (D ≥ 1|u, F/ {u} 〈0〉) with O(m
2

ε4 lnm) independent
samples if there are d(u, v) ≥ 1 for v ∈ H ∧ v corresponds to a different node
nj , or this value can be neglected by the similar argument with ARG, as there
will must be a point u′ ∈ H which also corresponds to ni st. P (u′) ≥ 1

m . Thus

we can estimate P (D ≥ 1, F 〈1〉) with O(m
3

ε4 lnm) samples.
Similarly, we can estimate P (D ≥ 1|F 〈2〉) by enumerating point pairs (u, v) ∈

H, and let
∑
u,v∈H,d(u,v)≥1 P (u, v) be the estimation of P (D ≥ 1|F 〈2〉). There

are at most O(m2) pairs.

Theorem 3. There is an FPRAS for estimating the probability of the distance
between the furthest pair of nodes is at least 1 in the Locational Uncertainty

Model with only O(m
3

ε4 lnm) independent samples.

4 Examples for Unapproximable Values:

k-th Longest m-Nearest Neighbor: The precise description of this prob-
lem is under any realization, for each node, find the distance to its m-nearest
neighbor, then compute the k-th longest one among these distances. Huang et
al.[13] gives a FPRAS for this value in the existential model. And we’ll show
that this value can’t be approximated in the locational uncertainty model unless
NP ⊆ BPP .
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Lemma 7. Given the undirect graph G, we can construct a Locational Uncer-
tainty Model G’. Then there is a vertex cover of size k iff E((n-k)th Longest
(n+m-1)Nearest Neighbor)>0 in G′.

Proof. Suppose for one point, there may be more than one node realized at it.
Now let’s show how to construct such an G′ according to G. Suppose there are
n vertices and m edges in G. Construct n points and n+m nodes in G′. Divide
the n+m nodes into two disjoint sets S1 and S2, with |S1| = n, |S2| = m. The
i-th node in S1 can only be present at i-th point with probability equals 1. The n
points in G′ correspond to the n vertices in G each, the m nodes in S2 correspond
to the m edges in G. Then if vertex vj is one of the end point of edge ei in G, the
corresponding node can be present at the corresponding point with probability
1/2 in G′. As for the distance of point pairs in G′, the distance of each pair is
M, which can even be +∞.

Under such a construction, it’s obvious that E((n-k)th Longest (n+m-1)Nearest
Neighbor)=M*p with p > 0 strictly if and only if there exists a vertex cover with
size k. Note that when p > 0, E((n-k)th Longest (n+m-1)Nearest Neighbor) can
be infinitely large

Then if there exists a FPRAS or any other approximation algorithms for E(k-
th Longest m-Nearest Neighbor) with finite approximation ratio and guaranteed
accuracy, we can construct a Locational Uncertainty Model G′ according to
Lemma 7. Run the algorithm on G′, and we can judge if there is a k-vertex
cover in G by comparing the output of the algorithm with zero, and get the
accurate result with guaranteed accuracy, which means NP ⊆ BPP .

Theorem 4. E(k-th Longest m-Nearest Neighbor) in Locational Uncertainty
Model is imapproximable within any finite ratio and guaranteed accuracy un-
less NP⊆BPP.

k-clustering problem: Not only in locational uncertainty model, the similar
thought can also be used in the existential uncertainty model. In the determin-
istic kclustering problem, we want to partition all points into k disjoint subsets
such that the spacing of the partition is maximized, where the spacing is defined
to be the minimum of any d(u, v) with u, v in different subsets. We have the
following lemma:

Lemma 8. Given an undirect graph G, we can construct a Existential Uncer-
tainty Model G, subject to there exists an independent set of k vertices G iff
P (k − clustering ≥ 1) > 0 in G.

Proof. Suppose there are n vertices in G, then there will also be n nodes in G′.
And there is a bijection between them. Each node will be present with probability
1/2. As for the distance of nodes in G′, for pair (ni, nj) in G′, if there is an edge
between the corresponding vertices in G, then d(ni, nj)=0.9, else d(ni, nj)=1.8.

Then if there is an independent set of size k in G, the output of the approx-
imation algorithms for the P (k − clustering ≥ 1) in G′ should be more than 0
strictly with guaranteed accuracy, or the approximation ratio will be ∞.
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Theorem 5. P (k−Clustering ≥ 1) in Existential Uncertainty Model is imap-
proximable within any finite ratio and guaranteed accuracy unless NP⊆BPP.

5 Conclusion

In this paper, we studied the expectation and the tail bound of distribution of
stochastic diameter, and prove some values can’t be approximated. One remain-
ing open problem is if there is FPRAS for k-Clustering problem and kth Closest
Pair problem, or they are also imapproximable. And studying the threshold
probabilities P(Obj≥ 1) and P(Obj≤ 1) for other values is also an interesting
topic.
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A Appendix

A.1 k-th closest pair:

k-th closest pair means for all pairs of nodes, find the k-th closest one among
them. We know that Max 2-SAT is a NP-Complete problem. Given a 2CNF with
n clauses and a integer k ¡ n, we would like to ask whether there is an assignment
such that at least k clauses are satisfied. Let P(kC≤1) represent P(k-th Closest
Pair≤1). We will show that

Lemma 9. Given the 2CNF and the integer k, we can construct a Locational
Uncertainty Model G. Then there is an assignment such that at least k clauses
are satisfied iff P (kC ≤ 1) > 0 in G.

Proof. Suppose there are n clauses and m variables in the 2-CNF. And there
is no clause containing both variable xi and xi for some i. Corresponding to
each variable xi, there are one node ui and two possible points Ai and Bi for
realization of ui. We have PuiAi = PuiBi = 1

2 . Then PuiAj = PuiBj = 0 for i 6= j.
Then for each clause ci, there will be one node vi and two possible points Ci

and Di. We also have PviCi = PviDi = 1
2 .

We can set a bijection that xi = true iff ui is realized to Ai. Then xi = true
iff ui is realized to Bi.

Then we should give the distance of the pairs of points. We let the distance
of any pairs of points be 1.8 for initialization. For the clause ci = [xt ∪ xs]. The
distance of two pairs (Ci, At) and (Di, As) should be changed to 0.9.

To see that even if both xt and xs are true, the clause ci = [xt ∪ xs] can
only contributes one pair with distance ≤ 1 in one possible realization. And for
another example, if ci = [xt∪xs], we can let the distance of (Ci, At) and (Di, Bs)
to be 0.9.

And what we should pay attention is that even if we have two same clauses
ci and cj , we still need to change the distance of four different pairs of points in
G be 0.9, each clause corresponds to two pairs.

Then if there is an assignment such that at least k clauses are satisfied,
there will be a realization that each node is realized in the corresponding point
according to assignment and bijection. And there will be one possible realization
that the k nodes corresponding to the k satisfied clauses are realized in the points
whose closest pair =0.9. Then P (kC ≤ 1) > 0. And the reversal direction is
similar.

Having proved this lemma, we can have the theorem below:

Theorem 6. P(kC≤ 1) in Locational Uncertainty Model is imapproximable within
any finite ratio and guaranteed accuracy unless NP⊆BPP.

A.2 kth Longest m-Nearest Neighbor

Lemma 10. Given the undirect graph G, we can construct a Locational Un-
certainty Model G’. Then there is a clique of size k iff P(longest k-1 nearest
neighbor≤ 1) > 0 in G′.
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Proof. Let k be the size of clique we want to find. And there are n vertices in
G. We will have k nodes in G′, denoted by {x1, ..., xk}. And we have k family
of points S1, ..., Sk. Each family Si has n points. And the node xi can be only
realized at the n points in Si with random probability, ie. PxiAj = 1

n for point
Aj ∈ Si.

As for the distance of pairs of nodes. For pair (u,v) when u and v are in the
same family, let d(u,v)=0.9.(In fact the distance of pair in the same family is
not important, as there will be only one node realized in the same family). We
want each vertex u in G corresponds to k points in G′, and the k points are
separated in the k disjoint family. Then there will be a bijection between the n
points in one family and the n vertices in G. Then consider pair (ui, vj) with ui
in Si, vj in Sj and i 6= j. Denote the corresponding vertex u of ui and v of vj in
G, if (u,v) is an edge in G, then let d(ui, vj) = 0.9, else d(ui, vj) = 1.8.(Remark:
Even if u==v in G, d(ui, vj) = 1.8). Then all the pairs will have a distance and
will meet the triangle inequality.

Theorem 7. P(kmNN≤ 1) in Locational Uncertainty Model is imapproximable
within any finite ratio and guaranteed accuracy unless NP⊆BPP.

A.3 K-clustering:

We have shown that P (k−clustering ≥ 1) is hard to approximate in Existential
Uncertainty Model, now we show it’s also unapproximated in Locational Model.
Note P (k − clustering ≥ 1) by P (kCL ≥ 1) later.

Lemma 11. Given an undirect graph G, we can construct a Lacational Uncer-
tainty Model G′, subject to G is 3-colorable iff P(kCL≥ 1) > 0 in G′.

Proof. Suppose there a n vertices in G. We can construct G′ with n nodes, and
there is a bijection between these n vertices and n nodes. We have 3 family of
points, noted by S1, S2, S3. And each family contains n points, where there also
is a bijection between n vertices in G and n points in Si for all i∈ {1, 2, 3}.

For each vertex xi in G, it has bijection relationships with node ui and three
points Ai, Bi, Ci, where Ai, Bi, Ci are in the three different family. Then we let
ui can only be realized in Ai, Bi, Ci, with probability 1

3 each.
As for the distance of pairs of points. For pair (u,v) with u and v are in

different family, let d(u,v)=1.8. For pair (ui, ut) in the same family, let xi has
the bijection relation with ui and xt for ut. If there is an edge (xi, xt) in G, then
d(ui, ut)=0.9, else d(ui, ut) = 1.8.

Theorem 8. P(kCL≥1) in Locational Uncertainty Model is imapproximable
within any finite ratio and guaranteed accuracy unless NP⊆BPP.

A.4 Minimum Cycle Cover and MST Problem:

In the deterministic version of the cycle cover problem, we are asked to find a
collection of node-disjoint cycles such that each node is in one cycle and the
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total length is minimized. Here we assume that each cycle contains at least
two nodes. If a cycle contains exactly two nodes, the length of the cycle is two
times the distance between these two nodes. And we still starts from 3-coloring
problem to show that P(Minimum Cycle Cover ≥ 1) is imapproximable. We
denote Minimum Cycle Cover by MCC below.

With the same construction in A.3, we have following lemmas and theorems:

Lemma 12. Given an undirect graph G, we can construct a Lacational Uncer-
tainty Model G′, subject to G is 3-colorable iff P(MCC≥ 1.8n) > 0 in G′.

Lemma 13. Given an undirect graph G, we can construct a Lacational Uncer-
tainty Model G′, subject to G is 3-colorable iff P(MST≥ 1.8n) > 0 in G′

With this lemma, we can have the following theorem:

Theorem 9. P(MCC≥1) and P(MST≥ 1) in Locational Uncertainty Model are
imapproximable within any finite ratio and guaranteed accuracy unless NP⊆BPP.


